
SOA and WCF
In the previous chapters, we covered a lot of interesting topics, such as:

How layered and tiered architectures work
How to implement an n-tier architecture in our web applications
How to use the ASP.NET MVC framework to completely de-couple our UI
from the code logic and make our GUI more unit-test friendly
How to use design patterns to write better and more robust code

In this chapter, we will learn about another famous architecture, known as Service
Oriented Architecture (SOA). We will also see how we can implement SOA
using the latest Microsoft programming framework for communication between
inter-connected systems, known as Windows Communication Foundation (WCF).
This chapter is not intended to be a comprehensive overview of either SOA or WCF,
but is intended to give developers a general idea of SOA-based architectures, and
where WCF fits in to this.

This chapter covers the following topics:

Understanding application size, scope and granularity
What is SOA
Why we need SOA
SOA using Web Services
What is Window Communication Foundation (WCF)
How we can implement SOA using WCF

•

•

•

•

•

•

•

•

•

•

SOA and WCF

[160]

Understanding Application Size, Scope,
and Granularity
Change is the only thing common to all software projects. No matter how perfect
the architecture is, or how robust the code is, we cannot guarantee that the business
needs will not change in the future. The core business logic may remain the same,
but new "non-core" changes can arise, such as the introduction of new product items,
modifications to data display routines, and so on. We cannot avoid change. A good
architecture will adapt to change rather than fight it.

Requirement changes and modifications to the code, and their impact on the
software application, depend on the actual scope and size of the application itself. So
before we go ahead with examining how we can manage changes, we first need to
understand how changes relate to the application's size and scope.

Small Applications Versus Big Applications
Web applications (or for that matter any kind of application that we may develop)
can broadly be categorized as big or small.

If the application has limited scope in terms of size as well as complexity, then
dealing with frequent changes in it, might be manageable. The developer working
on such an application can quickly make changes and upload them—a process that
will not take much time due to the limited scope and size of these web applications.
Dealing with changes in a large application is altogether a different matter.

But how do we define or categorize applications as big or small? Here are some
parameters that can help us define the scope of a web application. Applications can
be categorized as "small", if they meet the following criteria:

Thin business rules: The application's business logic is not complex, which
means that the business layer is either too "thin" or non-existent (the web tier
may talk directly with the data layer). For example, a simple website that
has only a few tables in the database (possibly used for small forms such
as "contact us" submissions), or a simple guestbook, or a simple time
tracking application.
Limited inter-application communication: The application does not need
to talk with other external third-party applications in the same environment
(say, within the same company, or within a network of computers, a LAN,
and so on). An application can be labeled as "small", if it is not sharing and is
not dependent upon other external applications. Examples of such a "small"
application would be an e-card based website, or a small shopping cart in an
e-commerce website.

•

•

